
Commun. Optim. Theory 2016 (2016), Article ID 18 Copyright c© 2016 Mathematical Research Press.

A NOTE ON THE UNIQUENESS OF ENTIRE FUNCTION f (z) SHARING A
SMALL FUNCTION WITH f (qz)

CHAO MENG1, XU LI2

1School of Science, Shenyang Aerospace University, Shenyang 110136, China

2Department of Research and Development Center, AVIC SAC Commercial Aircraft Company Limited,

Shenyang 110003, China

Abstract. In this paper, we investigate the uniqueness problem related to an entire function f (z) and its q-difference

f (qz), where q is a non-zero constant. We will prove some q-difference analogues of the theorem given by K.W.

Yu [On entire and meromorphic functions that share small functions with their derivatives, J. Inequal. Pure Appl.

Math. 4 (2003), Article ID 21].
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1. Introduction-Results

In what follows, a meromorphic function will mean meromorphic in the whole complex plane. Set E(a, f ) =

{z : f (z)− a = 0}, where a zero point with multiplicity m is counted m times in the set. If these zeros points are

only counted once, then we denote the set by E(a, f ). Let f and g be two nonconstant meromorphic functions.

If E(a, f ) = E(a,g), then we say that f and g share the value a CM; if E(a, f ) = E(a,g), then we say that f and

g share the value a IM. Let m be a positive integer or infinity and a ∈ C∪{∞}. We denote by Em)(a, f ) the set

of all a-points of f with multiplicities not exceeding m, where an a-point is counted according to its multiplicity.

Also we denote by Em)(a, f ) the set of distinct a-points of f with multiplicities not greater than m. We denote

by Nk)(r,1/( f − a)) the counting function for zeros of f − a with multiplicity ≤ k, and by Nk)(r,1/( f − a)) the

corresponding one for which multiplicity is not counted. Let N(k(r,1/( f −a)) be the counting function for zeros of

f −a with multiplicity at least k and N(k(r,1/( f −a)) the corresponding one for which multiplicity is not counted.
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Set

Nk(r,
1

f −a
) = N(r,

1
f −a

)+N(2(r,
1

f −a
)+ ...+N(k(r,

1
f −a

) .

As usual, by S(r, f ) we denote any quantity satisfying S(r, f ) = o(T (r, f )) for all r outside of a possible excep-

tional set of finite linear measure. In particular, we denote by S1(r, f ) any quantity satisfying S1(r, f ) = o(T (r, f ))

for all r on a set of logarithmic density 1. It is assumed that the reader is familiar with the notations of Nevanlinna

theory, that can be found, for instance, in [7] and [15]. Denote

Θ(0, f ) = 1− limsup
r→∞

N(r,1/ f )
T (r, f )

,

δp(0, f ) = 1− limsup
r→∞

Np(r,1/ f )
T (r, f )

.

We now explain in the following definition the notion of weighted sharing which was introduced by I. Lahiri [9].

Definition. [9] For a complex number a ∈ C∪{∞}, we denote by Ek(a, f ) the set of all a-points of f where an

a-point with mutiplicity m is counted m times if m≤ k and k+1 times if m> k. For a complex number a∈C∪{∞},

such that Ek(a, f ) = Ek(a,g), then we say that f and g share the value a with weight k.

The definition implies that if f , g share a value a with weight k then z0 is a zero of f − a with multiplicity

m(≤ k) if and only if it is a zero of g−a with multiplicity m(≤ k) and z0 is a zero of f −a with multiplicity m(> k)

if and only if it is a zero of g− a with multiplicity n(> k), where m is not necessarily equal to n. We write f , g

share (a,k) to mean that f , g share the value a with weight k. Clearly if f , g share (a,k) then f , g share (a, p) for

all integer p, 0≤ p < k. Also we note that f , g share a value a IM or CM if and only if f , g share (a,0) or (a,∞)

respectively.

Rubel and Yang [12], Gundersen [5], Yang [13] and many other authors have obtained elegant results on the

uniqueness problems of entire functions that share values CM or IM with their first or k-th derivatives. In the aspect

of only one CM value, R.Brück posed the following conjecture.

Conjecture. [3] Let f be a nonconstant entire function. Suppose that ρ1( f ) is not a positive integer or infinite, if

f and f ′ share one finite value a CM, then
f ′−a
f −a

= c ,

for some non-zero constant c, where ρ1( f ) is the first iterated order of f which is defined by

ρ1( f ) = limsup
r→∞

log logT (r, f )
logr

.

In 1998, Gundersen and Yang [6] proved that the conjecture is true if f is of finite order, and in 1999, Yang [14]

generalized their result to the k-th derivatives. In 2004, Chen and Shon [4] proved that the conjecture is true for

entire functions of first iterated order ρ1( f )< 1/2. In 2003, Yu considered the case that a is a small function and

obtained the following result.
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Theorem A. [17] Let f be a nonconstant entire function, let k be a positive integer, and let a be a small mero-

morphic function of f such that a(z) 6≡ 0,∞. If f − a and f (k)− a share the value 0 CM and δ (0, f ) > 3/4, then

f ≡ f (k).

Lin and Lin [10] improved Theorem B with the notion of weakly weighted sharing.

Theorem B. [10] Let k ≥ 1 and 2 ≤ m ≤ ∞. Let f be a nonconstant entire function, and let a be a small function

of f such that a(z) 6≡ 0,∞. If f and f (k) share “(a,m)” and δ2+k(0, f )> 1
2 , then f ≡ f (k).

In 2010, Meng proved the following result.

Theorem C. [11] Let f be a nonconstant entire function, and let a be a small function of f such that a(z) 6≡ 0,∞.

If E4)(a, f ) = E4)(a, f (k)) and E2)(a, f ) = E2)(a, f (k)) and δ2+k(0, f )> 1
2 , then f ≡ f (k).

Now one may ask the following question which is the motivation of the paper: Can we get q-difference ana-

logues of the above results with the notion of weighed sharing ? Considering this question, we prove the following

results.

Theorem 1. Let f be a zero-order entire function, and q ∈C\{0}, a(z) be a small function of f such that a(z) 6≡

0,∞. If f (z) and f (qz) share (a(z),2) and Θ(0, f )> 3/4, then f ≡ f (qz).

Theorem 2. Let f be a zero-order entire function, and q ∈C\{0}, a(z) be a small function of f such that a(z) 6≡

0,∞. If f (z) and f (qz) share (a(z),1) and Θ(0, f )> 7/9, then f ≡ f (qz).

Theorem 3. Let f be a zero-order entire function, and q ∈C\{0}, a(z) be a small function of f such that a(z) 6≡

0,∞. If f (z) and f (qz) share (a(z),0) and Θ(0, f )> 6/7, then f ≡ f (qz).

2. Some lemmas

In this section, we present some lemmas which will be needed in the sequel. We will denote by H the following

function:

H =

(
F ′′

F ′
− 2F ′

F−1

)
−
(

G′′

G′
− 2G′

G−1

)
.

Lemma 1. [8] Let F, G be two nonconstant meromorphic functions such that they share (1,2), and H 6≡ 0. Then

T (r,F)≤ N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N2(r,F)+N2(r,G)+S(r,F)+S(r,G) ,

the same inequality holds for T (r,G).

Lemma 2. [18] Let f be a zero-order meromorphic function, and q ∈C\{0}. Then

T (r, f (qz)) = (1+o(1))T (r, f (z))

on a set of lower logarithmic density 1.
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Lemma 3. [2] Let f be a zero-order meromorphic function, and q ∈C\{0}. Then

m
(

r,
f (qz)
f (z)

)
= S1(r, f ) .

Lemma 4. [1] Let F, G be two nonconstant meromorphic functions such that they share (1,1), and H 6≡ 0. Then

T (r,F)≤ N2

(
r,

1
F

)
+N2(r,F)+N2

(
r,

1
G

)
+N2(r,G)+

1
2

N
(

r,
1
F

)
+

1
2

N(r,F)+S(r,F)+S(r,G) ,

the same inequality holds for T (r,G).

Lemma 5. [1] Let F, G be two nonconstant meromorphic functions such that they share (1,0), and H 6≡ 0. Then

T (r,F)≤ N2

(
r,

1
F

)
+N2(r,F)+N2

(
r,

1
G

)
+N2(r,G)+2N

(
r,

1
F

)
+2N(r,F)+N

(
r,

1
G

)
+N(r,G)+S(r,F)+S(r,G) ,

the same inequality holds for T (r,G).

3. Proof of Theorem 1

Let

F =
f
a
, G =

f (qz)
a

. (3.1)

Then it is easy to verify F and G share (1,2). Let H be defined as above. Suppose that H 6≡ 0. It follows from

Lemma 1 that

T (r,F)+T (r,G)≤ 2
{

N2

(
r,

1
F

)
+N2

(
r,

1
G

)}
+S(r,F)+S(r,G),

that is,

T (r, f )+T (r, f (qz))≤ 2N2

(
r,

1
f

)
+2N2

(
r,

1
f (qz)

)
+S(r, f ) . (3.2)

Furthermore, we note that

N2

(
r,

1
f

)
≤ 2N

(
r,

1
f

)
,N2

(
r,

1
f (qz)

)
≤ 2N

(
r,

1
f

)
. (3.3)

Using Lemma 2 and (3.2) (3.3), we obtain

T (r, f )≤ 4N
(

r,
1
f

)
+S1(r, f ) . (3.4)

It follows that 4Θ(0, f )≤ 3, which contradicts Θ(0, f )> 3/4. Therefore H ≡ 0. That is

F ′′

F ′
−2

F ′

F−1
≡ G′′

G′
−2

G′

G−1
. (3.5)

It follows that
1

F−1
=

A
G−1

+B , (3.6)
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where A(6= 0) and B are constants. Therefore,

F =
(B+1)G+(A−B−1)

BG+(A−B)
. (3.7)

Now we distinguish the following three cases.

Case 1. Suppose that B 6=−1,0. If A−B−1 6= 0, then from (3.7), we have

N

(
r,

1
G+ A−B−1

B+1

)
= N

(
r,

1
F

)
. (3.8)

By the Second Fundamental Theorem, we have

T (r,G)< N
(

r,
1
G

)
+N

(
r,

1
G+ A−B−1

B+1

)
+S(r,G) , (3.9)

that is,

T (r, f (qz))< N
(

r,
1

f (qz)

)
+N

(
r,

1
f

)
+S(r, f ) , (3.10)

and so

T (r, f )< 2N
(

r,
1
f

)
+S1(r, f ) . (3.11)

It follows that Θ(0, f )≤ 1/2, which contradicts Θ(0, f )> 3/4. Therefore A−B−1 = 0. From (3.7), we obtain

N

(
r,

1
G+ 1

B

)
= N(r,F) . (3.12)

Similar to the arguments in the above, we also have a contradiction.

Case 2. Suppose that B =−1. If A+1 6= 0. Then from (3.7), we have

N
(

r,
1

G− (A+1)

)
= N(r,F) . (3.13)

Similar to the arguments in Case 1, we can get a contradiction. Therefore, A+ 1 = 0, then from (3.7), we have

FG≡ 1. From (3.1), we have

f (z) f (qz)≡ a2 . (3.14)

From (3.14) and Lemma 3, we obtain that

2T (r, f (z)) = T
(

r,
1

f (z)2

)
+O(1) = T

(
r,

1
f (z)

f (qz)
a2

)
+O(1)

= m
(

r,
f (qz)
f (z)

)
+N

(
r,

f (qz)
f (z)

)
+S1(r, f )

≤ T (r, f (z))+S1(r, f ) .

Thus T (r, f (z)) = S1(r, f ), which is impossible.

Case 3. Suppose that B = 0. If A−1 6= 0, then from (3.7), we have

N
(

r,
1

G+(A−1)

)
= N

(
r,

1
F

)
. (3.15)

Similar to the arguments in Case 1, we also have a contradiction. Therefore A−1 = 0. From (3.7) we have F ≡G,

this implies f (z)≡ f (qz). This completes the proof of Theorem 1.
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4. Proof of Theorem 2

Let

F =
f
a
, G =

f (qz)
a

. (4.1)

Then it is easy to verify F and G share (1,1). Let H be defined as above. Suppose that H 6≡ 0. It follows from

Lemma 4 that

T (r,F)+T (r,G)≤ 2
{

N2

(
r,

1
F

)
+N2

(
r,

1
G

)}
+

1
2

N
(

r,
1
F

)
+

1
2

N
(

r,
1
G

)
+S(r,F)+S(r,G) . (4.2)

Using Lemma 2 and (3.3) (4.2), we obtain

T (r, f )≤ 9
2

N
(

r,
1
f

)
+S1(r, f ) . (4.3)

It follows that Θ(0, f ) ≤ 7
9 , which contradicts Θ(0, f ) > 7/9. Therefore H ≡ 0. Similar to the arguments in

Theorem 1, we see that Theorem 2 holds.

5. Proof of Theorem 3

Let

F =
f
a
, G =

f (qz)
a

. (5.1)

Then it is easy to verify F and G share (1,0). Let H be defined as above. Suppose that H 6≡ 0. It follows from

Lemma 5 that

T (r,F)+T (r,G)≤ 2
{

N2

(
r,

1
F

)
+N2

(
r,

1
G

)}
+3N

(
r,

1
F

)
+3N

(
r,

1
G

)
+S(r,F)+S(r,G) . (5.2)

Using Lemma 2 and (3.3) (5.2), we obtain

T (r, f )≤ 7N
(

r,
1
f

)
+S1(r, f ) . (5.3)

It follows that Θ(0, f ) ≤ 6
7 , which contradicts Θ(0, f ) > 6/7. Therefore H ≡ 0. Similar to the arguments in

Theorem 1, we see that Theorem 3 holds.
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