UNIQUENESS OF ENTIRE FUNCTIONS CONCERNING DIFFERENCE POLYNOMIALS

Chao Meng, Shenyang

(Received October 6, 2012)

Abstract

In this paper, we investigate the uniqueness problem of difference polynomials sharing a small function. With the notions of weakly weighted sharing and relaxed weighted sharing we prove the following: Let $f(z)$ and $g(z)$ be two transcendental entire functions of finite order, and $\alpha(z)$ a small function with respect to both $f(z)$ and $g(z)$. Suppose that c is a non-zero complex constant and $n \geqslant 7$ (or $n \geqslant 10$) is an integer. If $f^{n}(z)(f(z)-1) f(z+c)$ and $g^{n}(z)(g(z)-1) g(z+c)$ share " $\left.\alpha(z), 2\right)$ " (or $\left.(\alpha(z), 2)^{*}\right)$, then $f(z) \equiv g(z)$. Our results extend and generalize some well known previous results.

Keywords: entire function; difference polynomial; uniqueness
MSC 2010: 30D35, 39A05

1. Introduction, DEFINITIONS AND RESULTS

By a meromorphic function we shall always mean a meromorphic function in the complex plane. Let k be a positive integer or infinity and $a \in C \cup\{\infty\}$. Set $E(a, f)=\{z: f(z)-a=0\}$, where a zero point with multiplicity k is counted k times in the set. If these zeros points are only counted once, then we denote the set by $\bar{E}(a, f)$. Let f and g be two nonconstant meromorphic functions. If $E(a, f)=$ $E(a, g)$, then we say that f and g share the value $a \mathrm{CM}$; if $\bar{E}(a, f)=\bar{E}(a, g)$, then we say that f and g share the value a IM. We denote by $E_{k)}(a, f)$ the set of all a-points of f with multiplicities not exceeding k, where an a-point is counted according to its multiplicity. Also we denote by $\bar{E}_{k)}(a, f)$ the set of distinct a-points of f with multiplicities not greater than k. It is assumed that the reader is familiar with the notations of Nevanlinna theory such as $T(r, f), m(r, f), N(r, f), \bar{N}(r, f), S(r, f)$ and so on, that can be found, for instance, in [5], [13]. We denote by $N_{k)}(r, 1 /(f-a))$ the counting function for zeros of $f-a$ with multiplicity less or equel to k, and by
$\bar{N}_{k)}(r, 1 /(f-a))$ the corresponding one for which multiplicity is not counted. Let $N_{(k}(r, 1 /(f-a))$ be the counting function for zeros of $f-a$ with multiplicity at least k and $\bar{N}_{(k}(r, 1 /(f-a))$ the corresponding one for which multiplicity is not counted. Set

$$
N_{k}\left(r, \frac{1}{f-a}\right)=\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-a}\right)+\ldots+\bar{N}_{k}\left(r, \frac{1}{f-a}\right) .
$$

Let $N_{E}(r, a ; f, g)\left(\bar{N}_{E}(r, a ; f, g)\right)$ be the counting function (reduced counting function) of all common zeros of $f-a$ and $g-a$ with the same multiplicities and $N_{0}(r, a ; f, g)\left(\bar{N}_{0}(r, a ; f, g)\right)$ the counting function (reduced counting function) of all common zeros of $f-a$ and $g-a$ ignoring multiplicities. If

$$
\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}\left(r, \frac{1}{g-a}\right)-2 \bar{N}_{E}(r, a ; f, g)=S(r, f)+S(r, g),
$$

then we say that f and g share a " CM ". On the other hand, if

$$
\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}\left(r, \frac{1}{g-a}\right)-2 \bar{N}_{0}(r, a ; f, g)=S(r, f)+S(r, g)
$$

then we say that f and g share a "IM".
We now explain in the following definition the notion of weakly weighted sharing which was introduced by Lin and Lin [8].

Definition 1 ([8]). Let f and g share a "IM" and k be a positive integer or ∞. $\bar{N}_{k)}^{E}(r, a ; f, g)$ denotes the reduced counting function of those a-points of f whose multiplicities are equal to the corresponding a-points of g, and both of their multiplicities are not greater than $k . \bar{N}_{(k}^{O}(r, a ; f, g)$ denotes the reduced counting function of those a-points of f which are a-points of g, and both of their multiplicities are not less than k.

Definition 2 ([8]). For $a \in C \cup\{\infty\}$, if k is a positive integer or ∞ and

$$
\begin{gathered}
\bar{N}_{k)}\left(r, \frac{1}{f-a}\right)-\bar{N}_{k)}^{E}(r, a ; f, g)=S(r, f), \\
\bar{N}_{k)}\left(r, \frac{1}{g-a}\right)-\bar{N}_{k)}^{E}(r, a ; f, g)=S(r, g), \\
\bar{N}_{(k+1}\left(r, \frac{1}{f-a}\right)-\bar{N}_{(k+1}^{O}(r, a ; f, g)=S(r, f), \\
\bar{N}_{(k+1}\left(r, \frac{1}{g-a}\right)-\bar{N}_{(k+1}^{O}(r, a ; f, g)=S(r, g),
\end{gathered}
$$

or if $k=0$ and

$$
\bar{N}\left(r, \frac{1}{f-a}\right)-\bar{N}_{0}(r, a ; f, g)=S(r, f), \bar{N}\left(r, \frac{1}{g-a}\right)-\bar{N}_{0}(r, a ; f, g)=S(r, g),
$$

then we say f and g weakly share a with weight k. Here we write f, g share " (a, k) " to mean that f, g weakly share a with weight k.

Now it is clear from Definition 2 that weakly weighted sharing is a scaling between IM and CM.

Recently, A. Banerjee and S. Mukherjee [1] introduced another sharing notion which is also a scaling between IM and CM but weaker than weakly weighted sharing.

Definition 3 ([1]). We denote by $\bar{N}(r, a ; f|=p ; g|=q)$ the reduced counting function of common a-points of f and g with multiplicities p and q, respectively.

Definition 4 ([1]). Let f, g share a "IM". Also let k be a positive integer or ∞ and $a \in C \cup\{\infty\}$. If

$$
\sum_{p, q \leqslant k} \bar{N}(r, a ; f|=p ; g|=q)=S(r),
$$

then we say f and g share a with weight k in a relaxed manner. Here we write f and g share $(a, k)^{*}$ to mean that f and g share a with weight k in a relaxed manner.
W.K. Hayman proposed the following well-known conjecture in [6].

Hayman's conjecture. If an entire function f satisfies $f^{n} f^{\prime} \neq 1$ for all positive integers $n \in N$, then f is a constant.

It has been verified by Hayman himself in [7] for the case $n>1$ and Clunie in [3] for the case $n \geqslant 1$, respectively.

It is well-known that if f and g share four distinct values CM, then f is a Möbius transformation of g. In 1997, corresponding to the famous conjecture of Hayman, Yang and Hua studied the unicity of differential monomials and obtained the following theorem.

Theorem A ([12]). Let $f(z)$ and $g(z)$ be two nonconstant entire functions, $n \geqslant 6$ a positive integer. If $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share 1 CM , then either $f(z)=c_{1} \mathrm{e}^{c z}, g(z)=$ $c_{2} \mathrm{e}^{-c z}$, where c_{1}, c_{2}, c are three constants satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$, or $f(z) \equiv$ $\operatorname{tg}(z)$ for a constant t such that $t^{n+1}=1$.

In 2001, Fang and Hong studied the unicity of differential polynomials of the form $f^{n}(f-1) f^{\prime}$ and proved the following uniqueness theorem.

Theorem B ([4]). Let f and g be two transcendental entire functions, $n \geqslant 11$ an integer. If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share the value 1 CM , then $f \equiv g$.

In 2004, Lin and Yi extended the above theorem as to the fixed-point. They proved the following result.

Theorem C ([9]). Let f and g be two transcendental entire functions, $n \geqslant 7$ an integer. If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share $z \mathrm{CM}$, then $f \equiv g$.

In 2010, Zhang [15] got an analogue result for translates.

Theorem D ([15]). Let $f(z)$ and $g(z)$ be two transcendental entire functions of finite order, and $\alpha(z)$ be a small function with respect to both $f(z)$ and $g(z)$. Suppose that c is a non-zero complex constant and $n \geqslant 7$ is an integer. If $f^{n}(z)(f(z)-1) \times$ $f(z+c)$ and $g^{n}(z)(g(z)-1) g(z+c)$ share $\alpha(z) \mathrm{CM}$, then $f(z) \equiv g(z)$.

Now one may ask the following question which is the motivation of the paper: Can the nature of small function $\alpha(z)$ be relaxed in the above theorem? Considering this question, we prove the following results.

Theorem 1. Let $f(z)$ and $g(z)$ be two transcendental entire functions of finite order, and $\alpha(z)$ be a small function with respect to both $f(z)$ and $g(z)$. Suppose that c is a non-zero complex constant and $n \geqslant 7$ is an integer. If $f^{n}(z)(f(z)-1) f(z+c)$ and $g^{n}(z)(g(z)-1) g(z+c)$ share " $(\alpha(z), 2)$ ", then $f(z) \equiv g(z)$.

Theorem 2. Let $f(z)$ and $g(z)$ be two transcendental entire functions of finite order, and $\alpha(z)$ be a small function with respect to both $f(z)$ and $g(z)$. Suppose that c is a non-zero complex constant and $n \geqslant 10$ is an integer. If $f^{n}(z)(f(z)-1) f(z+c)$ and $g^{n}(z)(g(z)-1) g(z+c)$ share $(\alpha(z), 2)^{*}$, then $f(z) \equiv g(z)$.

Without the notions of weakly weighted sharing and relaxed weighted sharing we prove the following theorem which also improves Theorem D.

Theorem 3. Let $f(z)$ and $g(z)$ be two transcendental entire functions of finite order, and $\alpha(z)$ a small function with respect to both $f(z)$ and $g(z)$. Suppose that c is a non-zero complex constant and $n \geqslant 16$ is an integer. If $\bar{E}_{2)}\left(\alpha(z), f^{n}(z) \times\right.$ $(f(z)-1) f(z+c))=\bar{E}_{2)}\left(\alpha(z), g^{n}(z)(g(z)-1) g(z+c)\right)$, then $f(z) \equiv g(z)$.

2. Some lemmas

In this section, we present some lemmas which will be needed in the sequel. We will denote by H the following function:

$$
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right)
$$

Lemma 1 ([1]). Let H be defined as above. If F and G share " $(1,2)$ " and $H \not \equiv 0$, then

$$
\begin{aligned}
T(r, F) \leqslant & N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, F)+N_{2}(r, G) \\
& -\sum_{p=3}^{\infty} \bar{N}_{(p}\left(r, \frac{G}{G^{\prime}}\right)+S(r, F)+S(r, G)
\end{aligned}
$$

and the same inequality holds for $T(r, G)$.
Lemma 2 ([1]). Let H be defined as above. If F and G share $(1,2)^{*}$ and $H \not \equiv 0$, then

$$
\begin{aligned}
T(r, F) \leqslant N_{2}\left(r, \frac{1}{F}\right) & +N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, F)+N_{2}(r, G)+\bar{N}\left(r, \frac{1}{F}\right) \\
& +\bar{N}(r, F)-m\left(r, \frac{1}{G-1}\right)+S(r, F)+S(r, G),
\end{aligned}
$$

and the same inequality holds for $T(r, G)$.
Lemma 3 ([14]). Let H be defined as above. If $H \equiv 0$ and

$$
\limsup _{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, F)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, G)}{T(r)}<1, \quad r \in I,
$$

where $T(r)=\max \{T(r, F), T(r, G)\}$ and I is a set with infinite linear measure, then $F \equiv G$ or $F G \equiv 1$.

Lemma 4 ([2]). Let $f(z)$ be a meromorphic function in the complex plane of finite order $\sigma(f)$, and let η be a fixed non-zero complex number. Then for each $\varepsilon>0$, one has

$$
T(r, f(z+\eta))=T(r, f(z))+O\left(r^{\sigma(f)-1+\varepsilon}\right)+O(\log r)
$$

Lemma 5 ([11]). Let $f(z)$ be an entire function of finite order $\sigma(f), c$ a fixed non-zero complex number, and

$$
P(z)=a_{n} f^{n}(z)+a_{n-1} f^{n-1}(z)+\ldots+a_{1} f(z)+a_{0}
$$

where $a_{j}(j=0,1, \ldots, n)$ are constants. If $F(z)=P(z) f(z+c)$, then

$$
T(r, F)=(n+1) T(r, f)+O\left(r^{\sigma(f)-1+\varepsilon}\right)+O(\log r) .
$$

Lemma 6 ([10]). Let F and G be two nonconstant entire functions, and $p \geqslant 2$ an integer. If $\bar{E}_{p)}(1, F)=\bar{E}_{p)}(1, G)$ and $H \not \equiv 0$, then

$$
T(r, F) \leqslant N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+2 \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G}\right)+S(r, F)+S(r, G) .
$$

3. Proof of Theorem 1

Let

$$
F(z)=\frac{f^{n}(z)(f(z)-1) f(z+c)}{\alpha(z)}, \quad G(z)=\frac{g^{n}(z)(g(z)-1) g(z+c)}{\alpha(z)} .
$$

Then $F(z)$ and $G(z)$ share " $(1,2)$ " except the zeros or poles of $\alpha(z)$. By Lemma 5, we have

$$
\begin{align*}
& T(r, F(z))=(n+2) T(r, f(z))+O\left(r^{\sigma(f)-1+\varepsilon}\right)+S(r, f), \tag{3.1}\\
& T(r, G(z))=(n+2) T(r, g(z))+O\left(r^{\sigma(g)-1+\varepsilon}\right)+S(r, g) . \tag{3.2}
\end{align*}
$$

Suppose $H \not \equiv 0$, then by Lemma 1 and Lemma 4 we have

$$
\begin{align*}
T(r, F) & +T(r, G) \leqslant 2 N_{2}\left(r, \frac{1}{F}\right)+2 N_{2}\left(r, \frac{1}{G}\right)+S(r, f)+S(r, g) \tag{3.3}\\
\leqslant & 4 \bar{N}\left(r, \frac{1}{f}\right)+4 \bar{N}\left(r, \frac{1}{g}\right)+2 N\left(r, \frac{1}{f(z)-1}\right)+2 N\left(r, \frac{1}{g(z)-1}\right) \\
& +2 N\left(r, \frac{1}{f(z+c)}\right)+2 N\left(r, \frac{1}{g(z+c)}\right)+S(r, f)+S(r, g) \\
\leqslant & 8 T(r, f)+8 T(r, g)+S(r, f)+S(r, g) .
\end{align*}
$$

Substituting (3.1) and (3.2) into (3.3), we obtain

$$
(n-6)[T(r, f)+T(r, g)] \leqslant O\left(r^{\sigma(f)-1+\varepsilon}\right)+O\left(r^{\sigma(g)-1+\varepsilon}\right)+S(r, f)+S(r, g)
$$

which contradicts with $n \geqslant 7$. Thus we have $H \equiv 0$. Note that

$$
\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G}\right) \leqslant 3 T(r, f)+3 T(r, g)+S(r, f)+S(r, g) \leqslant T(r)
$$

where $T(r)=\max \{T(r, F), T(r, G)\}$. By Lemma 3, we deduce that either $F \equiv G$ or $F G \equiv 1$. Next we will consider the following two cases, respectively.

Case 1. $F \equiv G$, thus $f^{n}(z)(f(z)-1) f(z+c) \equiv g^{n}(z)(g(z)-1) g(z+c)$. Let $\varphi(z)=f(z) / g(z)$. If $\varphi^{n+1}(z) \varphi(z+c) \not \equiv 1$, we have

$$
\begin{equation*}
g(z)=\frac{\varphi^{n}(z) \varphi(z+c)-1}{\varphi^{n+1}(z) \varphi(z+c)-1} . \tag{3.4}
\end{equation*}
$$

Then $\varphi(z)$ is a transcendental meromorphic function of finite order since $g(z)$ is transcendental. By Lemma 4, we have

$$
\begin{equation*}
T(r, \varphi(z+c))=T(r, \varphi(z))+S(r, \varphi) \tag{3.5}
\end{equation*}
$$

If $\varphi^{n+1}(z) \varphi(z+c)=k(\neq 1)$, where k is a constant, then Lemma 4 and (3.5) imply that

$$
(n+1) T(r, \varphi(z))=T(r, \varphi(z+c))+O(1)=T(r, \varphi(z))+O\left(r^{\sigma(\varphi(z))-1+\varepsilon}\right)+O(\log r)
$$

which contradicts with $n \geqslant 7$. Thus $\varphi^{n+1}(z) \varphi(z+c)$ is not a constant. Suppose that there exists a point z_{0} such that $\varphi\left(z_{0}\right)^{n+1} \varphi\left(z_{0}+c\right)=1$. Then $\varphi\left(z_{0}\right)^{n} \varphi\left(z_{0}+c\right)=1$ since $g(z)$ is an entire function. Hence $\varphi\left(z_{0}\right)=1$ and

$$
\bar{N}\left(r, \frac{1}{\varphi^{n+1}(z) \varphi(z+c)-1}\right) \leqslant \bar{N}\left(r, \frac{1}{\varphi(z)-1}\right) \leqslant T(r, \varphi(z))+O(1)
$$

We apply the second Nevanlinna fundamental theorem to $\varphi(z)^{n+1} \varphi(z+c)$:

$$
\begin{aligned}
& T\left(r, \varphi^{n+1}(z) \varphi(z+c)\right) \leqslant \bar{N}\left(r, \varphi^{n+1}(z) \varphi(z+c)\right)+\bar{N}\left(r, \frac{1}{\varphi^{n+1}(z) \varphi(z+c)}\right) \\
&+ \bar{N}\left(r, \frac{1}{\varphi^{n+1}(z) \varphi(z+c)-1}\right)+S(r, \varphi) \leqslant 5 T(r, \varphi(z))+S(r, \varphi)
\end{aligned}
$$

By Lemma 5 we deduce

$$
\begin{equation*}
(n-3) T(r, \varphi(z)) \leqslant O\left(r^{\sigma(\varphi)-1+\varepsilon}\right)+S(r, \varphi) \tag{3.6}
\end{equation*}
$$

which contradicts with $n \geqslant 7$. So $\varphi^{n+1}(z) \varphi(z+c) \equiv 1$. Thus $\varphi(z) \equiv 1$, that is $f(z) \equiv g(z)$.

Case 2. $F(z) G(z) \equiv 1$, that is

$$
\begin{equation*}
f^{n}(z)(f(z)-1) f(z+c) g^{n}(z)(g(z)-1) g(z+c) \equiv \alpha^{2}(z) \tag{3.7}
\end{equation*}
$$

Since f and g are transcendental entire functions, we can deduce from (3.7) that $N(r, 1 / f)=S(r, f), N(r, f)=S(r, f)$ and $N(r, 1 /(f-1))=S(r, f)$. Then $\delta(0, f)+$ $\delta(\infty, f)+\delta(1, f)=3$, which contradicts the deficiency relation. This completes the proof of Theorem 1 .

4. Proof of Theorem 2

Let

$$
F(z)=\frac{f^{n}(z)(f(z)-1) f(z+c)}{\alpha(z)}, \quad G(z)=\frac{g^{n}(z)(g(z)-1) g(z+c)}{\alpha(z)} .
$$

Then $F(z)$ and $G(z)$ share $(1,2)^{*}$ except the zeros or poles of $\alpha(z)$. Obviously

$$
\begin{gather*}
2 N_{2}\left(r, \frac{1}{F}\right)+2 N_{2}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G}\right)+S(r, F)+S(r, G) \tag{4.1}\\
\leqslant 11 T(r, f)+11 T(r, g)+S(r, f)+S(r, g)
\end{gather*}
$$

According to (4.1) and Lemma 2, we can prove Theorem 2 in a similar way as in Section 3.

5. Proof of Theorem 3

Let

$$
F(z)=\frac{f^{n}(z)(f(z)-1) f(z+c)}{\alpha(z)}, \quad G(z)=\frac{g^{n}(z)(g(z)-1) g(z+c)}{\alpha(z)} .
$$

Then $\bar{E}_{2)}\left(1, f^{n}(z)(f(z)-1) f(z+c)\right)=\bar{E}_{2)}\left(1, g^{n}(z)(g(z)-1) g(z+c)\right)$ except the zeros or poles of $\alpha(z)$. Obviously

$$
\begin{gather*}
2 N_{2}\left(r, \frac{1}{F}\right)+2 N_{2}\left(r, \frac{1}{G}\right)+3 \bar{N}\left(r, \frac{1}{F}\right)+3 \bar{N}\left(r, \frac{1}{G}\right)+S(r, F)+S(r, G) \tag{5.1}\\
\leqslant 17 T(r, f)+17 T(r, g)+S(r, f)+S(r, g)
\end{gather*}
$$

Using (5.1) and Lemma 6 , we can prove Theorem 3 in a similar way as in Section 3.

Acknowledgement. The author is grateful to the referee for a number of helpful suggestions to improve the paper.

References

[1] A. Banerjee, S. Mukherjee: Uniqueness of meromorphic functions concerning differential monomials sharing the same value. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 50 (2007), 191-206.
zbl MR
[2] Y. M. Chiang, S. J. Feng: On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane. Ramanujan J. 16 (2008), 105-129.
zbl MR
[3] J. Clunie: On a result of Hayman. J. Lond. Math. Soc. 42 (1967), 389-392. zbl MR
[4] M. L. Fang, W. Hong: A unicity theorem for entire functions concerning differential polynomials. Indian J. Pure Appl. Math. 32 (2001), 1343-1348.
[5] W. K. Hayman: Meromorphic Functions. Oxford Mathematical Monographs, Clarendon, Oxford, 1964.
zbl MR
[6] W. K. Hayman: Research Problems in Function Theory. University of London, The Athlone Press, London, 1967.
zbl MR
[7] W. K. Hayman: Picard values of meromorphic functions and their derivatives. Ann. Math. (2) 70 (1959), 9-42.
zbl MR
[8] S. H. Lin, W. C. Lin: Uniqueness of meromorphic functions concerning weakly weightedsharing. Kodai Math. J. 29 (2006), 269-280.
zbl MR
[9] W. C. Lin, H. X. Yi: Uniqueness theorems for meromorphic functions concerning fixedpoints. Complex Variables, Theory Appl. 49 (2004), 793-806.
zbl MR
[10] X. Q. Lin, W. C. Lin: Uniqueness of entire functions sharing one value. Acta Math. Sci., Ser. B, Engl. Ed. 31 (2011), 1062-1076.
zbl MR
[11] G. Wang, D. L. Han, Z. T. Wen: Uniqueness theorems on difference monomials of entire functions. Abstr. Appl. Anal. 2012 (2012), ID 407351, 8 pages.
zbl MR
[12] C. C. Yang, X. H. Hua: Uniqueness and value-sharing of meromorphic functions. Ann. Acad. Sci. Fenn., Math. 22 (1997), 395-406.
zbl MR
[13] L. Yang: Value Distribution Theory. Translated and revised from the 1982 Chinese original. Science Press, Beijing, Springer, Berlin, 1993.
zbl MR
[14] H. X. Yi: Meromorphic functions that share one or two values. Complex Variables, Theory Appl. 28 (1995), 1-11.
zbl MR
[15] J. L. Zhang: Value distribution and shared sets of differences of meromorphic functions. J. Math. Anal. Appl. 367 (2010), 401-408.
zbl MR

Author's address: Chao Meng, School of Science, Shenyang Aerospace University, P. O. Box 110136, Shenyang, China, e-mail: mengchaosau@163.com.

