UNIQUENESS OF ENTIRE FUNCTIONS CONCERNING DIFFERENCE POLYNOMIALS

CHAO MENG, Shenyang

(Received October 6, 2012)

Abstract. In this paper, we investigate the uniqueness problem of difference polynomials sharing a small function. With the notions of weakly weighted sharing and relaxed weighted sharing we prove the following: Let f(z) and g(z) be two transcendental entire functions of finite order, and $\alpha(z)$ a small function with respect to both f(z) and g(z). Suppose that c is a non-zero complex constant and $n \ge 7$ (or $n \ge 10$) is an integer. If $f^n(z)(f(z)-1)f(z+c)$ and $g^n(z)(g(z)-1)g(z+c)$ share " $(\alpha(z),2)$ " (or $(\alpha(z),2)^*$), then $f(z) \equiv g(z)$. Our results extend and generalize some well known previous results.

Keywords: entire function; difference polynomial; uniqueness

MSC 2010: 30D35, 39A05

1. INTRODUCTION, DEFINITIONS AND RESULTS

By a meromorphic function we shall always mean a meromorphic function in the complex plane. Let k be a positive integer or infinity and $a \in C \cup \{\infty\}$. Set $E(a, f) = \{z: f(z) - a = 0\}$, where a zero point with multiplicity k is counted k times in the set. If these zeros points are only counted once, then we denote the set by $\overline{E}(a, f)$. Let f and g be two nonconstant meromorphic functions. If E(a, f) = E(a, g), then we say that f and g share the value a CM; if $\overline{E}(a, f) = \overline{E}(a, g)$, then we say that f and g share the value a CM; if $\overline{E}(a, f) = \overline{E}(a, g)$, then we say that f and g share the value a IM. We denote by $E_{k}(a, f)$ the set of all a-points of f with multiplicities not exceeding k, where an a-point is counted according to its multiplicity. Also we denote by $\overline{E}_{k}(a, f)$ the set of distinct a-points of f with multiplicities not greater than k. It is assumed that the reader is familiar with the notations of Nevanlinna theory such as $T(r, f), m(r, f), N(r, f), \overline{N}(r, f), S(r, f)$ and so on, that can be found, for instance, in [5], [13]. We denote by $N_{k}(r, 1/(f - a))$ the counting function for zeros of f - a with multiplicity less or equel to k, and by

 $\overline{N}_{k}(r, 1/(f-a))$ the corresponding one for which multiplicity is not counted. Let $N_{(k}(r, 1/(f-a)))$ be the counting function for zeros of f-a with multiplicity at least k and $\overline{N}_{(k}(r, 1/(f-a)))$ the corresponding one for which multiplicity is not counted. Set

$$N_k\left(r,\frac{1}{f-a}\right) = \overline{N}\left(r,\frac{1}{f-a}\right) + \overline{N}_{(2}\left(r,\frac{1}{f-a}\right) + \ldots + \overline{N}_{(k}\left(r,\frac{1}{f-a}\right).$$

Let $N_E(r, a; f, g)(\overline{N}_E(r, a; f, g))$ be the counting function (reduced counting function) of all common zeros of f - a and g - a with the same multiplicities and $N_0(r, a; f, g)(\overline{N}_0(r, a; f, g))$ the counting function (reduced counting function) of all common zeros of f - a and g - a ignoring multiplicities. If

$$\overline{N}\left(r,\frac{1}{f-a}\right) + \overline{N}\left(r,\frac{1}{g-a}\right) - 2\overline{N}_E(r,a;f,g) = S(r,f) + S(r,g),$$

then we say that f and g share a "CM". On the other hand, if

$$\overline{N}\left(r,\frac{1}{f-a}\right) + \overline{N}\left(r,\frac{1}{g-a}\right) - 2\overline{N}_0(r,a;f,g) = S(r,f) + S(r,g),$$

then we say that f and g share a "IM".

We now explain in the following definition the notion of weakly weighted sharing which was introduced by Lin and Lin [8].

Definition 1 ([8]). Let f and g share a "IM" and k be a positive integer or ∞ . $\overline{N}_{k)}^{E}(r, a; f, g)$ denotes the reduced counting function of those a-points of f whose multiplicities are equal to the corresponding a-points of g, and both of their multiplicities are not greater than k. $\overline{N}_{(k)}^{O}(r, a; f, g)$ denotes the reduced counting function of those a-points of f which are a-points of g, and both of their multiplicities are not greater than k.

Definition 2 ([8]). For $a \in C \cup \{\infty\}$, if k is a positive integer or ∞ and

$$\overline{N}_{k}\left(r,\frac{1}{f-a}\right) - \overline{N}_{k}^{E}(r,a;f,g) = S(r,f),$$

$$\overline{N}_{k}\left(r,\frac{1}{g-a}\right) - \overline{N}_{k}^{E}(r,a;f,g) = S(r,g),$$

$$\overline{N}_{(k+1}\left(r,\frac{1}{f-a}\right) - \overline{N}_{(k+1}^{O}(r,a;f,g) = S(r,f),$$

$$\overline{N}_{(k+1}\left(r,\frac{1}{g-a}\right) - \overline{N}_{(k+1}^{O}(r,a;f,g) = S(r,g),$$

or if k = 0 and

$$\overline{N}\left(r,\frac{1}{f-a}\right) - \overline{N}_0(r,a;f,g) = S(r,f), \overline{N}\left(r,\frac{1}{g-a}\right) - \overline{N}_0(r,a;f,g) = S(r,g),$$

then we say f and g weakly share a with weight k. Here we write f, g share "(a, k)" to mean that f, g weakly share a with weight k.

Now it is clear from Definition 2 that weakly weighted sharing is a scaling between IM and CM.

Recently, A. Banerjee and S. Mukherjee [1] introduced another sharing notion which is also a scaling between IM and CM but weaker than weakly weighted sharing.

Definition 3 ([1]). We denote by $\overline{N}(r, a; f| = p; g| = q)$ the reduced counting function of common *a*-points of *f* and *g* with multiplicities *p* and *q*, respectively.

Definition 4 ([1]). Let f, g share a "IM". Also let k be a positive integer or ∞ and $a \in C \cup \{\infty\}$. If

$$\sum_{p,q\leqslant k}\overline{N}(r,a;f|=p;g|=q)=S(r),$$

then we say f and g share a with weight k in a relaxed manner. Here we write f and g share $(a, k)^*$ to mean that f and g share a with weight k in a relaxed manner.

W. K. Hayman proposed the following well-known conjecture in [6].

Hayman's conjecture. If an entire function f satisfies $f^n f' \neq 1$ for all positive integers $n \in N$, then f is a constant.

It has been verified by Hayman himself in [7] for the case n > 1 and Clunie in [3] for the case $n \ge 1$, respectively.

It is well-known that if f and g share four distinct values CM, then f is a Möbius transformation of g. In 1997, corresponding to the famous conjecture of Hayman, Yang and Hua studied the unicity of differential monomials and obtained the following theorem.

Theorem A ([12]). Let f(z) and g(z) be two nonconstant entire functions, $n \ge 6$ a positive integer. If $f^n f'$ and $g^n g'$ share 1 CM, then either $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$, where c_1, c_2, c are three constants satisfying $(c_1 c_2)^{n+1} c^2 = -1$, or $f(z) \equiv tg(z)$ for a constant t such that $t^{n+1} = 1$.

In 2001, Fang and Hong studied the unicity of differential polynomials of the form $f^n(f-1)f'$ and proved the following uniqueness theorem.

Theorem B ([4]). Let f and g be two transcendental entire functions, $n \ge 11$ an integer. If $f^n(f-1)f'$ and $g^n(g-1)g'$ share the value 1 CM, then $f \equiv g$.

In 2004, Lin and Yi extended the above theorem as to the fixed-point. They proved the following result.

Theorem C ([9]). Let f and g be two transcendental entire functions, $n \ge 7$ an integer. If $f^n(f-1)f'$ and $g^n(g-1)g'$ share $z \in M$, then $f \equiv g$.

In 2010, Zhang [15] got an analogue result for translates.

Theorem D ([15]). Let f(z) and g(z) be two transcendental entire functions of finite order, and $\alpha(z)$ be a small function with respect to both f(z) and g(z). Suppose that c is a non-zero complex constant and $n \ge 7$ is an integer. If $f^n(z)(f(z) - 1) \times f(z+c)$ and $g^n(z)(g(z) - 1)g(z+c)$ share $\alpha(z)$ CM, then $f(z) \equiv g(z)$.

Now one may ask the following question which is the motivation of the paper: Can the nature of small function $\alpha(z)$ be relaxed in the above theorem? Considering this question, we prove the following results.

Theorem 1. Let f(z) and g(z) be two transcendental entire functions of finite order, and $\alpha(z)$ be a small function with respect to both f(z) and g(z). Suppose that c is a non-zero complex constant and $n \ge 7$ is an integer. If $f^n(z)(f(z)-1)f(z+c)$ and $g^n(z)(g(z)-1)g(z+c)$ share " $(\alpha(z), 2)$ ", then $f(z) \equiv g(z)$.

Theorem 2. Let f(z) and g(z) be two transcendental entire functions of finite order, and $\alpha(z)$ be a small function with respect to both f(z) and g(z). Suppose that c is a non-zero complex constant and $n \ge 10$ is an integer. If $f^n(z)(f(z)-1)f(z+c)$ and $g^n(z)(g(z)-1)g(z+c)$ share $(\alpha(z),2)^*$, then $f(z) \equiv g(z)$.

Without the notions of weakly weighted sharing and relaxed weighted sharing we prove the following theorem which also improves Theorem D.

Theorem 3. Let f(z) and g(z) be two transcendental entire functions of finite order, and $\alpha(z)$ a small function with respect to both f(z) and g(z). Suppose that c is a non-zero complex constant and $n \ge 16$ is an integer. If $\overline{E}_{2}(\alpha(z), f^n(z) \times (f(z) - 1)f(z+c)) = \overline{E}_{2}(\alpha(z), g^n(z)(g(z) - 1)g(z+c))$, then $f(z) \equiv g(z)$.

2. Some Lemmas

In this section, we present some lemmas which will be needed in the sequel. We will denote by H the following function:

$$H = \left(\frac{F''}{F'} - \frac{2F'}{F-1}\right) - \left(\frac{G''}{G'} - \frac{2G'}{G-1}\right).$$

Lemma 1 ([1]). Let H be defined as above. If F and G share "(1, 2)" and $H \neq 0$, then

$$T(r,F) \leq N_2\left(r,\frac{1}{F}\right) + N_2\left(r,\frac{1}{G}\right) + N_2(r,F) + N_2(r,G)$$
$$-\sum_{p=3}^{\infty} \overline{N}_{(p}\left(r,\frac{G}{G'}\right) + S(r,F) + S(r,G),$$

and the same inequality holds for T(r, G).

Lemma 2 ([1]). Let H be defined as above. If F and G share $(1,2)^*$ and $H \neq 0$, then

$$T(r,F) \leq N_2\left(r,\frac{1}{F}\right) + N_2\left(r,\frac{1}{G}\right) + N_2(r,F) + N_2(r,G) + \overline{N}\left(r,\frac{1}{F}\right) + \overline{N}(r,F) - m\left(r,\frac{1}{G-1}\right) + S(r,F) + S(r,G),$$

and the same inequality holds for T(r, G).

Lemma 3 ([14]). Let H be defined as above. If $H \equiv 0$ and

$$\limsup_{r \to \infty} \frac{\overline{N}(r, \frac{1}{F}) + \overline{N}(r, F) + \overline{N}(r, \frac{1}{G}) + \overline{N}(r, G)}{T(r)} < 1, \quad r \in I,$$

where $T(r) = \max\{T(r, F), T(r, G)\}$ and I is a set with infinite linear measure, then $F \equiv G$ or $FG \equiv 1$.

Lemma 4 ([2]). Let f(z) be a meromorphic function in the complex plane of finite order $\sigma(f)$, and let η be a fixed non-zero complex number. Then for each $\varepsilon > 0$, one has

$$T(r, f(z+\eta)) = T(r, f(z)) + O(r^{\sigma(f)-1+\varepsilon}) + O(\log r)$$

Lemma 5 ([11]). Let f(z) be an entire function of finite order $\sigma(f)$, c a fixed non-zero complex number, and

$$P(z) = a_n f^n(z) + a_{n-1} f^{n-1}(z) + \ldots + a_1 f(z) + a_0$$

where a_j (j = 0, 1, ..., n) are constants. If F(z) = P(z)f(z+c), then

$$T(r,F) = (n+1)T(r,f) + O(r^{\sigma(f)-1+\varepsilon}) + O(\log r).$$

Lemma 6 ([10]). Let F and G be two nonconstant entire functions, and $p \ge 2$ an integer. If $\overline{E}_p(1,F) = \overline{E}_p(1,G)$ and $H \ne 0$, then

$$T(r,F) \leq N_2\left(r,\frac{1}{F}\right) + N_2\left(r,\frac{1}{G}\right) + 2\overline{N}\left(r,\frac{1}{F}\right) + \overline{N}\left(r,\frac{1}{G}\right) + S(r,F) + S(r,G).$$

3. Proof of Theorem 1

Let

$$F(z) = \frac{f^n(z)(f(z) - 1)f(z + c)}{\alpha(z)}, \qquad G(z) = \frac{g^n(z)(g(z) - 1)g(z + c)}{\alpha(z)}.$$

Then F(z) and G(z) share "(1,2)" except the zeros or poles of $\alpha(z)$. By Lemma 5, we have

(3.1)
$$T(r, F(z)) = (n+2)T(r, f(z)) + O(r^{\sigma(f)-1+\varepsilon}) + S(r, f),$$

(3.2)
$$T(r,G(z)) = (n+2)T(r,g(z)) + O(r^{\sigma(g)-1+\varepsilon}) + S(r,g).$$

Suppose $H \neq 0$, then by Lemma 1 and Lemma 4 we have

$$(3.3) T(r,F) + T(r,G) \leq 2N_2\left(r,\frac{1}{F}\right) + 2N_2\left(r,\frac{1}{G}\right) + S(r,f) + S(r,g) \\ \leq 4\overline{N}\left(r,\frac{1}{f}\right) + 4\overline{N}\left(r,\frac{1}{g}\right) + 2N\left(r,\frac{1}{f(z)-1}\right) + 2N\left(r,\frac{1}{g(z)-1}\right) \\ + 2N\left(r,\frac{1}{f(z+c)}\right) + 2N\left(r,\frac{1}{g(z+c)}\right) + S(r,f) + S(r,g) \\ \leq 8T(r,f) + 8T(r,g) + S(r,f) + S(r,g).$$

Substituting (3.1) and (3.2) into (3.3), we obtain

$$(n-6)[T(r,f)+T(r,g)] \leqslant O(r^{\sigma(f)-1+\varepsilon}) + O(r^{\sigma(g)-1+\varepsilon}) + S(r,f) + S(r,g)$$

which contradicts with $n \ge 7$. Thus we have $H \equiv 0$. Note that

$$\overline{N}\Big(r,\frac{1}{F}\Big) + \overline{N}\Big(r,\frac{1}{G}\Big) \leqslant 3T(r,f) + 3T(r,g) + S(r,f) + S(r,g) \leqslant T(r)$$

where $T(r) = \max\{T(r, F), T(r, G)\}$. By Lemma 3, we deduce that either $F \equiv G$ or $FG \equiv 1$. Next we will consider the following two cases, respectively.

Case 1. $F \equiv G$, thus $f^n(z)(f(z) - 1)f(z + c) \equiv g^n(z)(g(z) - 1)g(z + c)$. Let $\varphi(z) = f(z)/g(z)$. If $\varphi^{n+1}(z)\varphi(z + c) \neq 1$, we have

(3.4)
$$g(z) = \frac{\varphi^n(z)\varphi(z+c) - 1}{\varphi^{n+1}(z)\varphi(z+c) - 1}.$$

Then $\varphi(z)$ is a transcendental meromorphic function of finite order since g(z) is transcendental. By Lemma 4, we have

(3.5)
$$T(r,\varphi(z+c)) = T(r,\varphi(z)) + S(r,\varphi).$$

If $\varphi^{n+1}(z)\varphi(z+c) = k(\neq 1)$, where k is a constant, then Lemma 4 and (3.5) imply that

$$(n+1)T(r,\varphi(z)) = T(r,\varphi(z+c)) + O(1) = T(r,\varphi(z)) + O(r^{\sigma(\varphi(z))-1+\varepsilon}) + O(\log r)$$

which contradicts with $n \ge 7$. Thus $\varphi^{n+1}(z)\varphi(z+c)$ is not a constant. Suppose that there exists a point z_0 such that $\varphi(z_0)^{n+1}\varphi(z_0+c) = 1$. Then $\varphi(z_0)^n\varphi(z_0+c) = 1$ since g(z) is an entire function. Hence $\varphi(z_0) = 1$ and

$$\overline{N}\left(r,\frac{1}{\varphi^{n+1}(z)\varphi(z+c)-1}\right) \leqslant \overline{N}\left(r,\frac{1}{\varphi(z)-1}\right) \leqslant T(r,\varphi(z)) + O(1).$$

We apply the second Nevanlinna fundamental theorem to $\varphi(z)^{n+1}\varphi(z+c)$:

$$T(r,\varphi^{n+1}(z)\varphi(z+c)) \leqslant \overline{N}(r,\varphi^{n+1}(z)\varphi(z+c)) + \overline{N}\left(r,\frac{1}{\varphi^{n+1}(z)\varphi(z+c)}\right) + \overline{N}\left(r,\frac{1}{\varphi^{n+1}(z)\varphi(z+c)-1}\right) + S(r,\varphi) \leqslant 5T(r,\varphi(z)) + S(r,\varphi).$$

By Lemma 5 we deduce

(3.6)
$$(n-3)T(r,\varphi(z)) \leqslant O(r^{\sigma(\varphi)-1+\varepsilon}) + S(r,\varphi),$$

which contradicts with $n \ge 7$. So $\varphi^{n+1}(z)\varphi(z+c) \equiv 1$. Thus $\varphi(z) \equiv 1$, that is $f(z) \equiv g(z)$.

Case 2. $F(z)G(z) \equiv 1$, that is

(3.7)
$$f^{n}(z)(f(z)-1)f(z+c)g^{n}(z)(g(z)-1)g(z+c) \equiv \alpha^{2}(z).$$

Since f and g are transcendental entire functions, we can deduce from (3.7) that N(r, 1/f) = S(r, f), N(r, f) = S(r, f) and N(r, 1/(f-1)) = S(r, f). Then $\delta(0, f) + \delta(\infty, f) + \delta(1, f) = 3$, which contradicts the deficiency relation. This completes the proof of Theorem 1.

4. Proof of Theorem 2

Let

$$F(z) = \frac{f^n(z)(f(z) - 1)f(z + c)}{\alpha(z)}, \qquad G(z) = \frac{g^n(z)(g(z) - 1)g(z + c)}{\alpha(z)}$$

Then F(z) and G(z) share $(1,2)^*$ except the zeros or poles of $\alpha(z)$. Obviously

(4.1)
$$2N_2\left(r,\frac{1}{F}\right) + 2N_2\left(r,\frac{1}{G}\right) + \overline{N}\left(r,\frac{1}{F}\right) + \overline{N}\left(r,\frac{1}{G}\right) + S(r,F) + S(r,G)$$
$$\leq 11T(r,f) + 11T(r,g) + S(r,f) + S(r,g).$$

According to (4.1) and Lemma 2, we can prove Theorem 2 in a similar way as in Section 3. $\hfill \Box$

5. Proof of Theorem 3

Let

$$F(z) = \frac{f^n(z)(f(z) - 1)f(z + c)}{\alpha(z)}, \qquad G(z) = \frac{g^n(z)(g(z) - 1)g(z + c)}{\alpha(z)}.$$

Then $\overline{E}_{2)}(1, f^n(z)(f(z) - 1)f(z + c)) = \overline{E}_{2)}(1, g^n(z)(g(z) - 1)g(z + c))$ except the zeros or poles of $\alpha(z)$. Obviously

(5.1)
$$2N_2\left(r,\frac{1}{F}\right) + 2N_2\left(r,\frac{1}{G}\right) + 3\overline{N}\left(r,\frac{1}{F}\right) + 3\overline{N}\left(r,\frac{1}{G}\right) + S(r,F) + S(r,G)$$
$$\leqslant 17T(r,f) + 17T(r,g) + S(r,f) + S(r,g).$$

Using (5.1) and Lemma 6, we can prove Theorem 3 in a similar way as in Section 3. $\hfill \Box$

A c k n o w l e d g e m e n t. The author is grateful to the referee for a number of helpful suggestions to improve the paper.

References

[1]	A. Banerjee, S. Mukherjee: Uniqueness of meromorphic functions concerning differential monomials sharing the same value. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 50		
	(2007), 191-206.	\mathbf{zbl}	MR
[2]	Y. M. Chiang, S. J. Feng: On the Nevanlinna characteristic of $f(z + \eta)$ and difference		
	equations in the complex plane. Ramanujan J. 16 (2008), 105–129.	\mathbf{zbl}	MR
[3]	J. Clunie: On a result of Hayman. J. Lond. Math. Soc. 42 (1967), 389–392.	zbl	MR
[4]	M. L. Fang, W. Hong: A unicity theorem for entire functions concerning differential poly-		
	nomials. Indian J. Pure Appl. Math. 32 (2001), 1343–1348.	\mathbf{zbl}	MR
[5]	W. K. Hayman: Meromorphic Functions. Oxford Mathematical Monographs, Clarendon,		
	Oxford, 1964.	\mathbf{zbl}	MR
[6]	W.K. Hayman: Research Problems in Function Theory. University of London, The		
	Athlone Press, London, 1967.	\mathbf{zbl}	MR
[7]	W. K. Hayman: Picard values of meromorphic functions and their derivatives. Ann.		
	Math. (2) 70 (1959), 9–42.	\mathbf{zbl}	MR
[8]	S. H. Lin, W. C. Lin: Uniqueness of meromorphic functions concerning weakly weighted-		
	sharing. Kodai Math. J. 29 (2006), 269–280.	zbl	MR
[9]	W. C. Lin, H. X. Yi: Uniqueness theorems for meromorphic functions concerning fixed-		
	points. Complex Variables, Theory Appl. 49 (2004), 793–806.	\mathbf{zbl}	MR
[10]	X. Q. Lin, W. C. Lin: Uniqueness of entire functions sharing one value. Acta Math. Sci.,		
	Ser. B, Engl. Ed. 31 (2011), 1062–1076.	zbl	MR
[11]	G. Wang, D. L. Han, Z. T. Wen: Uniqueness theorems on difference monomials of entire		
	functions. Abstr. Appl. Anal. 2012 (2012), ID 407351, 8 pages.	\mathbf{zbl}	MR
[12]	C. C. Yang, X. H. Hua: Uniqueness and value-sharing of meromorphic functions. Ann.		
[]	Acad. Sci. Fenn., Math. 22 (1997), 395–406.	\mathbf{zbl}	MR
[13]	L. Yang: Value Distribution Theory. Translated and revised from the 1982 Chinese orig-	1001	
[10]	inal. Science Press, Beijing, Springer, Berlin, 1993.	zbl	MR
[14]	<i>H. X. Yi</i> : Meromorphic functions that share one or two values. Complex Variables, The-	201	
[++]	ory Appl. 28 (1995), 1–11.	\mathbf{zbl}	MR
[15]	<i>J. L. Zhang</i> : Value distribution and shared sets of differences of meromorphic functions.		VIII
[10]	J. Math. Anal. Appl. 367 (2010), 401–408.	zbl	MR
	o. mani. mai. mppi. 007 (2010), 401 400.	201	VIIU

Author's address: Chao Meng, School of Science, Shenyang Aerospace University, P.O. Box 110136, Shenyang, China, e-mail: mengchaosau@163.com.