## TEST 1

| Score |  | Reviewer |  |
| :--- | :--- | :--- | :--- |

## I . Fill in the blanks (Each blank is 1 point, the total is 15 points).

1. $\qquad$ is the motion unit and moves as a whole, $\qquad$ is the manufacture unit and cannot be divided into a smaller one.
2. If the two connected links have surface contact, we call the kinematic pair as a $\qquad$ , if the connection takes place only at a point or along a line, it is known as a $\qquad$ .
3. The conditions for a mechanism to have a determined motion is $\qquad$
4. The number of instant centers of a planar six-bar mechanism is $\qquad$ , and the number of absolute instant centers is $\qquad$ .
5. According to the types of the two side links, the types of the revolute four-bar mechanisms can be divided into $\qquad$ , $\qquad$ , and $\qquad$ .
6. For a rocker-slider mechanism, when $\qquad$ is the driving link, the mechanism will have dead points. At the dead points, the pressure angle is $\qquad$ and transmission angle is $\qquad$ .
7. For a revolute four-bar mechanism, if the sum of the shortest and the longest links is greater than the sum of the remaining two links, we can get $\qquad$ mechanism.
8. If the coefficient of travel speed variation K is bigger than 1 , that means the mechanism has $\qquad$ characteristics.

| Score |  | Reviewer |  |
| :--- | :--- | :--- | :--- |

## II. (12 points)

The mechanism is shown in the right figure.

1. Calculate the DOF.
2. If there are compound hinges, passive DOF or redundant constraints, please figure them out.
3. If the motion of the mechanism is determined,
 how many driving links should be there?

| Score |  | Reviewer |  |
| :--- | :--- | :--- | :--- |

## III (14 points)

The mechanism is shown in the right figure.

1. Calculate the DOF.
2. If there are compound hinges, passive DOF or redundant constraints, please figure them out.
3. If $A B$ is driving link, will the mechanism have determined motion?


| Score |  | Reviewer |  |
| :--- | :--- | :--- | :--- |

## IV. (14 points)

The mechanism is shown below. The angular velocity $\omega_{1}$ of link 1 is given.

1. Locate all instant centers for the mechanism.
2. Find the angular velocity $\omega_{3}$ of link 3 .
3. Find the angular velocity $\omega_{2}$ of link 2.


| Score |  | Reviewer |  |
| :--- | :--- | :--- | :--- |

## V. (12 points)

The mechanism is shown below. The angular velocity $\omega_{1}$ of link 1 is given.

1. Locate all instant centers for the mechanism.
2. Find the velocity $\mathrm{v}_{2}$ of link 2.


| Score |  | Reviewer |  |
| :--- | :--- | :--- | :--- |

## VI. (16 points)

The dimensions of a revolute four-bar linkage are given. Link $A B$ is the driving link. $A B=28 \mathrm{~mm}, B C=$ $65 \mathrm{~mm}, \mathrm{CD}=50 \mathrm{~mm}, \mathrm{AD}=70 \mathrm{~mm}$.

1. Determine the type of the linkage mechanism.
2. Determine the type of revolutes $A, B, C$ and $D$.
3. Draw the pressure angle $\alpha$ and transmission angle $\gamma$.
4. Can this mechanism have dead points?

Under what circumstance will it have dead points?
5. If $C D$ is taken as the frame, determine the type of the linkage mechanism.


| Score |  | Reviewer |  |
| :--- | :--- | :--- | :--- |

## VII. (17 points)

One planar four-bar linkage is shown below. Link $A B$ is the driving link.

1. Name the linkage mechanism.
2. Write out the condition for having crank of the mechanism.
3. Draw the pressure angle $\alpha$ and transmission angle $\gamma$.
4. Determine if it has quick return characteristic.
5. Can this mechanism have dead points? Under what circumstance will it have dead points?
6. If the coefficient of travel speed variation $\mathrm{K}=1.5$, calculate the crank acute angle of two limiting positions $\theta$.


## TEST 2

| Score |  | Reviewer |  |
| :--- | :--- | :--- | :--- |

## I . Fill in the blanks (Each blank is $\mathbf{2}$ point, the total is $\mathbf{1 6}$ points).

1. Instant center is the coincident point at which two links have the same ( ).
A. Relative velocity
B. Absolute velocity
C. Acceleration
2. If a mechanism had no quick return characteristic, the time ratio ( ).
A. $K>1$
B. $K=1$
C. $\mathrm{K}<1$
3. Three plana links have three instant centers, and these three instant centers ( ).
A. coincident
B. on a straight line
C. don't on a straight line
4. At the dead points, the transmission angle of plana four bar mechanisms should(
A. $\mathrm{y}>0^{\circ}$
B. $y=0^{\circ}$
C. $90^{\circ}>\gamma>0^{\circ}$
D. $\gamma>90^{\circ}$
5. In a mechanism, the independent motion unit is called ( ).
A. machine element
B. link
6. If the crack was taken as driver in the crack-rocker mechanism, the minimum transmission angle can be obtained when ( ).
A. crack and coupler become collinear B. crack and frame become collinear
7. In plana mechanisms, one higher pair will introduce (
) constrains.
A. 0
B. 1
C. 2
D. 3
8. Revolute 6 bar mechanism, the total Instant center is ( ).
A. 6
B. 15
C. 30
D. 3

| Score |  | Reviewer |  |
| :--- | :--- | :--- | :--- |

## II. (14 points)

The mechanism is shown in the right figure.

1. Calculate the DOF.
2. If there are compound hinges, passive DOF or redundant constraints, please figure them o
3. If the motion of the mechanism is determined, how many driving links should be there?


| Score |  | Reviewer |  |
| :--- | :--- | :--- | :--- |

## III (14 points)

The mechanism is shown in the right figure.

1. Calculate the DOF.
2. If there are compound hinges, passive DOF or redundant constraints, please figure them out.


| Score |  | Reviewer |  |
| :--- | :--- | :--- | :--- |

## IV. (14 points)

The mechanism is shown below. The angular velocity $\omega_{1}$ of link 1 is given.

1. Locate all instant centers for the mechanism.
2. Find the angular velocity $\omega_{3}$ of link 3.


| Score |  | Reviewer |  |
| :--- | :--- | :--- | :--- |

## V. (12 points)

The mechanism is shown below. The angular velocity $\omega_{1}$ of link 1 is given.

1. Locate all instant centers for the mechanism.
2. Find $\omega_{3}$.


| Score |  | Reviewer |  |
| :--- | :--- | :--- | :--- |

## VI. (16 points)

The dimensions of a revolute four-bar linkage are given. Link $A B$ is the driving link. $A B=30 \mathrm{~mm}, B C=$ $70 \mathrm{~mm}, \mathrm{CD}=67 \mathrm{~mm}, \mathrm{AD}=80 \mathrm{~mm}$.

1. Determine the type of the linkage mechanism.
2. Determine the type of revolutes $A, B, C$ and $D$.
3. Draw the pressure angle $\alpha$ and transmission angle $\gamma$.
4. Can this mechanism have dead points?

Under what circumstance will it have dead points?
5. If $C D$ is taken as the frame, determine the type of the linkage mechanism.


| Score |  | Reviewer |  |
| :--- | :--- | :--- | :--- |

## VII. (14 points)

One planar six-bar linkage is shown below. Link $A B$ is the driving link, $l_{A B}=75 \mathrm{~mm}, l_{B C}=55 \mathrm{~mm}$,
$l_{C D}=78 \mathrm{~mm}, l_{A D}=70 \mathrm{~mm}$.

1. Name the linkage mechanism $A B C D$.
2. Draw the pressure angle $\alpha$ and transmission angle $\gamma$.

