

TEST 1

Score	Reviewer	
-------	----------	--

I . Fill in the blanks (Each blank is 1 point, the total is 15 points).

1 is the motion unit and moves as a whole,	_ is the manufacture
unit and cannot be divided into a smaller one.	
2. If the two connected links have surface contact, we call the kinematic pair as a	, if
the connection takes place only at a point or along a line, it is known as a	·
3. The conditions for a mechanism to have a determined motion is	
·	
4. The number of instant centers of a planar six-bar mechanism is, and th	e number of absolute
instant centers is	
5. According to the types of the two side links, the types of the revolute four-bar	mechanisms can be
divided into , , and	·
6. For a rocker-slider mechanism, when is the driving link, the mecha	anism will have dead
points. At the dead points, the pressure angle isand transmission angle	e is
7. For a revolute four-bar mechanism, if the sum of the shortest and the longest lin	ks is greater than the
sum of the remaining two links, we can getmechanism.	
8. If the coefficient of travel speed variation K is bigger than 1, that means the mech	nanism
has characteristics.	
· · · · · · · · · · · · · · · · · · ·	

II. (12 points)

Score

The mechanism is shown in the right figure.

- 1. Calculate the DOF.
- 2. If there are compound hinges, passive DOF or redundant constraints, please figure them out.

Reviewer

3. If the motion of the mechanism is determined, how many driving links should be there?

III (14 points)

The mechanism is shown in the right figure.

- 1. Calculate the DOF.
- 2. If there are compound hinges, passive DOF or redundant constraints, please figure them out.
- 3. If AB is driving link, will the mechanism have determined motion?

IV. (14 points)

The mechanism is shown below. The angular velocity ω_1 of link 1 is given.

- 1. Locate all instant centers for the mechanism.
- 2. Find the angular velocity ω_3 of link 3.
- 3. Find the angular velocity $\omega_2\, of$ link 2.

Score	Reviewer	
-------	----------	--

V. (12 points)

The mechanism is shown below. The angular velocity ω_1 of link 1 is given.

- 1. Locate all instant centers for the mechanism.
- 2. Find the velocity v_2 of link 2.

Score	Reviewer	

VI. (16 points)

The dimensions of a revolute four-bar linkage are given. Link AB is the driving link. AB=28mm, BC=65mm, CD=50mm, AD=70mm.

- 1. Determine the type of the linkage mechanism.
- 2. Determine the type of revolutes A, B, C and D.
- 3. Draw the pressure angle α and transmission angle $\gamma.$
- 4. Can this mechanism have dead points? Under what circumstance will it have dead points?
- 5. If CD is taken as the frame, determine the type of the linkage mechanism.

Score	Reviewer	
-------	----------	--

VII. (17 points)

One planar four-bar linkage is shown below. Link AB is the driving link.

- 1. Name the linkage mechanism.
- 2. Write out the condition for having crank of the mechanism.
- 3. Draw the pressure angle α and transmission angle γ .
- 4. Determine if it has quick return characteristic.
- 5. Can this mechanism have dead points? Under what circumstance will it have dead points?
- 6. If the coefficient of travel speed variation K=1.5, calculate the crank acute angle of two limiting positions θ .

TEST 2

Score Reviewer

I . Fill in the blanks (Each blank is 2 point, the total is 16 points).

- 1. Instant center is the coincident point at which two links have the same ().
 - A. Relative velocity B. Absolute velocity C. Acceleration
- 2. If a mechanism had no quick return characteristic, the time ratio ().

A. K>1 B. K=1 C. K<1

3. Three plana links have three instant centers, and these three instant centers ().

A. coincident B. on a straight line C. don't on a straight line

4. At the dead points, the transmission angle of plana four bar mechanisms should ().

A. $\gamma > 0^{\circ}$ B. $\gamma = 0^{\circ}$ C. $90^{\circ} > \gamma > 0^{\circ}$ D. $\gamma > 90^{\circ}$

- 5. In a mechanism, the independent motion unit is called ().
 - A. machine element B. link
- 6. If the crack was taken as driver in the crack-rocker mechanism, the minimum transmission angle can be obtained when ().
 - A. crack and coupler become collinear B. crack and frame become collinear
- 7. In plana mechanisms, one higher pair will introduce () constrains.

A.0 B.1 C.2 D.3

8. Revolute 6 bar mechanism, the total Instant center is ().

A. 6 B. 15 C. 30 D. 3

Test Paper of SAU

Score Reviewer

II. (14 points)

The mechanism is shown in the right figure.

- 1. Calculate the DOF.
- 2. If there are compound hinges, passive DOF or redundant constraints, please figure them o
- 3. If the motion of the mechanism is determined, how many driving links should be there?

Score	Reviewer	
-------	----------	--

III (14 points)

The mechanism is shown in the right figure.

- 1. Calculate the DOF.
- 2. If there are compound hinges, passive DOF or redundant constraints, please figure them out.

Score Reviewer

IV. (14 points)

The mechanism is shown below. The angular velocity ω_1 of link 1 is given.

- 1. Locate all instant centers for the mechanism.
- 2. Find the angular velocity ω_3 of link 3.

V. (12 points)

The mechanism is shown below. The angular velocity ω_1 of link 1 is given.

- 1. Locate all instant centers for the mechanism.
- 2. Find ω_3 .

Score

Reviewer

VI. (16 points)

The dimensions of a revolute four-bar linkage are given. Link AB is the driving link. AB=30mm, BC=70mm, CD=67mm, AD=80mm.

- 1. Determine the type of the linkage mechanism.
- 2. Determine the type of revolutes A, B, C and D.
- 3. Draw the pressure angle α and transmission angle $\gamma.$
- 4. Can this mechanism have dead points? Under what circumstance will it have dead points?
- 5. If CD is taken as the frame, determine the type of the linkage mechanism.

Score		Reviewer	
-------	--	----------	--

VII. (14 points)

One planar six-bar linkage is shown below. Link AB is the driving link, $l_{AB} = 75 \,\mathrm{mm}$, $l_{BC} = 55 \,\mathrm{mm}$,

 $l_{CD} = 78 \,\mathrm{mm}, \ l_{AD} = 70 \,\mathrm{mm}.$

- 1. Name the linkage mechanism ABCD.
- 2. Draw the pressure angle α and transmission angle $\gamma.$

